L'ALGORITMO DI LUHN: La matematica che smaschera le carte di credito

CLAUDIO MARINI (CPIA1 SIENA)

Un percorso didattico innovativo per l'insegnamento della matematica in contesti carcerari

La Casa Circondariale di Santo Spirito

Situata nel **cuore della città**,
ospita mediamente tra i 50 e 70
detenuti in un edificio storico (ex
convento)
La sezione maschile a custodia
attenuata favorisce le attività
rieducative e formative

Il contesto offre:

- Corsi scolastici e formativi (CPIA, laboratori)
- Collaborazioni con associazioni e volontari
- "Dimensione familiare" che facilita rapporti diretti

14 + 15 = 323.X7 = 162X17 = 501X45 = IT

INSEGNARE LA MATEMATICA IN CARCERE

Contesto formativo

Bassi livelli di istruzione di partenza e scarsa continuità didattica dovuta a trasferimenti, scarcerazioni e assenze frequenti

Sfide psicologiche

Motivazione altalenante tra chi vuole rimettersi in gioco e chi è sfiduciato, contesti personali complessi (fragilità, traumi)

Barriere pratiche

Diversità linguistica e culturale, limitazioni logistiche, uso ridotto di tecnologia (internet quasi vietato)

Approccio necessario

Didattica flessibile e inclusiva con percorsi personalizzati e adattamento continuo

Quando sono nate le carte di credito?

La (buffa) nascita delle carte di credito

1950, New York: Frank McNamara va a cena in un ristorante chic

Al momento di pagare... si accorge di aver dimenticato i contanti!

Promette al ristoratore: "Troverò un sistema per pagare senza soldi in tasca"

L'anno dopo inventa la **Diners Club Card**, aprendo la strada a Visa, Mastercard e tutto il sistema delle carte di credito

Perché spiegare l'algoritmo di Luhn in carcere?

- **È concreto e vicino alla vita reale**: le carte di credito le conoscono tutti
- → Mostra l'utilità pratica della matematica: dietro a un gesto quotidiano c'è un algoritmo
- **È semplice ma elegante**: bastano aritmetica di base e un po' di logica
- → Dà potere e consapevolezza: capire come funziona un controllo di sicurezza

L'algoritmo stimola il pensiero logico e ha un lato "magico" che crea

stupore anche in chi è diffidente verso la matematica

Come funziona l'algoritmo di Luhn

Passo 1

Sottolineiamo una cifra sì e una no, partendo da quella più a sinistra

Passo 2

Sommiamo tutte le cifre sottolineate e raddoppiamo il risultato

Passo 3

Sommiamo tutte le cifre NON sottolineate

Passo 4

Contiamo quante cifre sottolineate maggiori di 4 sono presenti

Verifica finale

Sommiamo i valori ottenuti nei passaggi 2-3-4: se il numero termina con 0, la carta può essere vera!

Esempio pratico

Numero di carta: 4163 3401 5328 9884

Sottolineo (evidenzio) un numero sì e uno no:

4163 3491 5328 9884

Sommo i numeri NON sottolineati: 1 + 3 + 4 + 1 + 3 + 8 + 8 + 4

= 32

Sommo i numeri sottolineati: 4 + 6 + 3 + 0 + 5 + 2 + 9 + 8 = 37

Raddoppio quel numero: $37 \times 2 = 74$

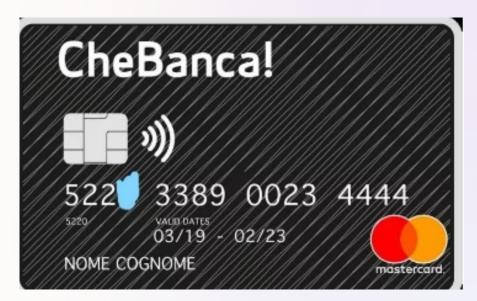
CONTO i numeri sottolineati maggiori di 4: il 6, il 5, il 9, l'8 = 4

Sommo questi ultimi tre risultati: 74 + 32 + 4 = 110

Il numero termina con 0, quindi la carta **è valida**!

Primi esercizi (anche per alfabetizzazione)

Verificare che le seguenti carte di credito sono false:



Questi esercizi introduttivi permettono anche agli studenti con competenze matematiche di base di familiarizzare con il procedimento, rafforzando le capacità di calcolo e l'autostima.

Per gli studenti stranieri, rappresentano anche un'opportunità di alfabetizzazione numerica in italiano.

Esercizi più impegnativi (scuole medie)

Quale numero è stato cancellato da questa carta di credito?

Questi esercizi stimolano il ragionamento inverso: partendo dal risultato finale (carta valida), gli studenti devono trovare l'elemento mancante attraverso calcoli a ritroso.

Applicazione pratica: nel mondo reale, ricostruire un numero di carta parzialmente visibile è una competenza utile in situazioni legittime (recupero dati personali).

Perché in questi problemi c'è un po' di logica?

Prendiamo la carta: 4163 0431 2358 X488 a cui è stato cancellato un numero

Sommo i numeri sottolineati: 4 + 6 + 0 + 3 + 2 + 5 + x + 8 = 28 + x

Raddoppio il risultato ottenuto: **56 + 2x**

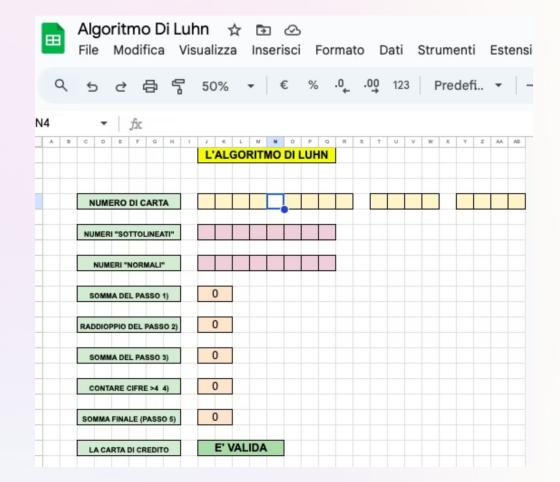
Sommo i numeri NON sottolineati: 1 + 3 + 4 + 1 + 3 + 8 + 4 + 8 = 32

Conto i numeri NON sottolineati maggiori di 4: il 6, il 5, la X?, l'8 = 3 + (1?)

Sommo gli ultimi tre risultati: 56 + 2x + 32 + 3 + (1?) = 91 + 2x + (1?)

A QUESTO PUNTO LO STUDENTE DEVE FARE DELLE SEMPLICI INFERENZE PER ARRIVARE

A CAPIRE QUAL è IL NUMERO CHE MANCA


Per studenti delle scuole superiori

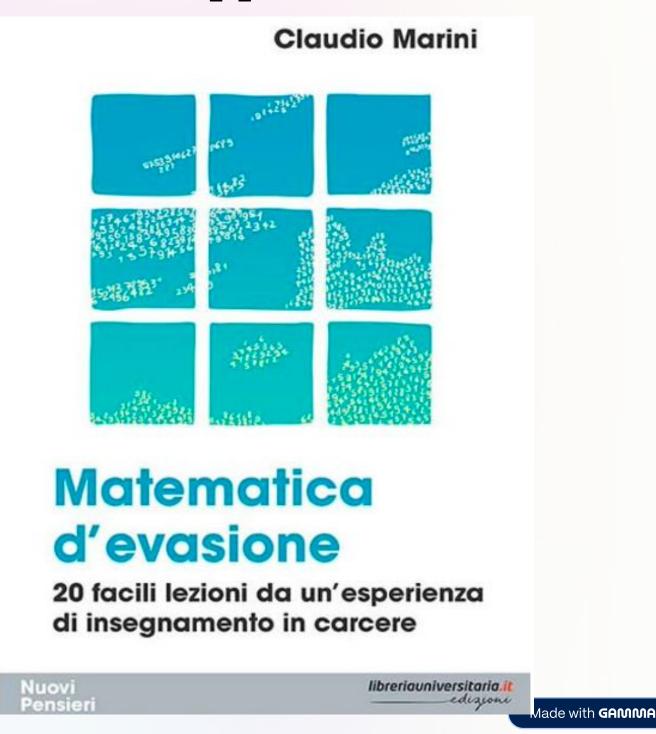
Degli esercizi proposti si può creare insieme agli studenti un foglio di calcolo che:

- 1. Verifichi se una carta di credito può essere vera o falsa
- 2. Trovi il numero non sottolineato che manca
- Trovi il numero sottolineato che manca

Questo passaggio consente di introdurre:

- Competenze digitali di base
- Automazione dei calcoli ripetitivi
- Logica della programmazione

Onclusione: L'algoritmo di Luhn dimostra come la matematica possa essere insegnata in modo coinvolgente e significativo anche in contesti difficili come quello carcerario, collegando concetti astratti ad applicazioni concrete e stimolando competenze trasversali.


Questa e altre attività le trovate descritte e approfondite in

MATEMATICA D'EVASIONE

DI CLAUDIO MARINI

CASA EDITRICE: <u>LIBRERIAUNIVERSITARIA.IT</u>

ANNO 2020

Altri progetti in Carcere dello stesso autore

Artisti dietro le sbarre

Podcast "Note (leggerissime) di letteratura"

L'amore ai tempi della circondariale (disponibile su tutte le piattaforme di streaming)

Grazie per l'attenzione!

Per qualsiasi richiesta, curiosità o informazione, scrivere a claudiomarini@cpia1siena.edu.it